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ABSTRACT

This report describes the work performed on the DARPA
Distributed Sensor Networks Program at Lincoln Laboratory
during the period 1 April through 30 September 1984.
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DISTRIBUTED SENSOR NETWORKS

1. INTRODUCTION AND SUMMARY

The Distributed Sensor Networks (DSN) program is aimed at developing and extending
target surveillance and tracking technology in systems that employ multiple spatially distributed
sensors and processing resources. Such a system would be made up of sensors, data bases, and
processors distributed throughout an area and interconnected by an appropriate digital data com-
munication system. The detection, tracking, and clamification of low-flying aircraft have been
selected to develop and evaluate DSN concepts in the light of a specific system problem. A DSN
test-bed has been developed and is being used to test and demonstrate DSN techniques and tech-
nology. The overall concept calls for a mix of sensor types. The initial test-bed sensors are small
arrays of microphones at each node augmented by TV sensors at some nodes. This Semiannual
Technical Summary (SATS) reports results for the period I April through 30 September 1984.

Section II summarizes progras i the development of distributed tracking algorithms. Major
software elements of a distributed tracking algorithm were completed and demonstrated to func-
tion correctly. Those portions that have been completed include modules for acoustic azimuth
tracking, track initiation, internodal broadcast of azimuth measurements, association of measure-
ments with tracks and for filtering azimuth measurements to update position tracks by means of
Extended Kalman Filters. The algorithm components were tested and demonstrated to operate
with real data as well as with simulated measurement data as input. Implementation of multi-site
position combining and broadcast modules is in progress.

Several new display programs and a single computer UNIX-based test-bed simulation envi-
ronment were implemented and used to aid in the development and testing of tracking algo-
rithms. The simulation environment provides internodal and interprocess communications similar
to that which will exist in the test-bed, and emulates the nodal system software environment by
subroutine calls. The UNIX environment significantly aids the algorithm development process. It
should be noted that the C-language code that implements the algorithm in the UNIX environ-
ment is the same code that will be used for test-bed nodes. The transition to the nodes will be
primarily a recompilation and relinking task to create new load modules.

In addition, a paper was presented at the American Control Conference that describes the
technical details of our distributed tracking algorithm.

Development and testing of distributed self-location algorithms is described in Section Ill. A
distributed algorithm has been developed to process initial nodal position estimates and estimates
of internodal ranges to obtain refined estimates of nodal positions.

s• Section IV summarizes results in the area of knowledge-based data interpretation. Emphasis
has been upon the diagnosis or explanation of unexpected features in the tracking output from a



DSN system. Based upon our experience in developing an experimental rule-based diagnosis sys-
tem, we concluded that the complex nature of a DSN system will make it very difficult to
achieve good diagnostic performance with only empirical rules. We have therefore also formu-
lated a design for a diagnosis system that incorporates model-based causal reasoning.

Progress with the development of a video sensor subsystem for the test-bed is summarized in
Section V. The objectives are for the tracking system to cue the video subsystem, to improve posi-
tion tracks by means of azimuth measurements extracted from video data, and to experiment
with sensor resource management. Video sensor subsystem hardware has been purchased,
assembled, and checked out by means of test software which we have written.

Section VI reviews progress with the acoustic subsystem for the test-bed nodes. Topics
include the evaluation of wideband signal-processing algorithms, their real-time test-bed implemen-
tation, and minor changes in test-bed microphone hardware. Parametric sensitivities and azimuth
estimation accuracy of the signal-processing algorithm were investigated. Azimuth accuracy
ranged from a fraction of a degree to several degrees, depending upon target signal-to-noise ratio.
Data from a subsonic but high-speed low-flying jet aircraft were part of the data base for these
evaluations. This was the first application of the algorithm to these kinds of data and the results
were completely satisfactory. A real-time version is now being developed for the test-bed nodes.

Test-bed facility enhancements are summarized in Section VII. This includes installation of a
new VAX research computer, installation of an Ethernet that interconnects the VAX with other

computational resources and with the test-bed nodes, addition of floating-point capabilities for
nodal computers, and implementation of a broadcast protocol for radios that will be integrated
into the test-bed.
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II. DISTRIBUTED TARGET TRACKING

A test-bed simulator was implemented as a tool for debugging and evaluating the new track-
ing algorithms that will be installed in test-bed nodes. Nodal versions of most of the major ele-
ments of new distributed tracking algorithms were implemented and checked out using the simula-
tor. Simulated acoustic data were used to test the portions of the new algorithms that have been
implemented. New display software, compatible with the new tracking algorithm, was developed
and used to review the output of the tracking algorithm. In June, a paper on the new tracking
algorithm was presented at the American Control Conference.t

A. DISTRIBUTED TRACKING ALGORITHMS AND SOFTWARE

Figure II-I shows the functional elements of tracking software in one node plus the major
data flows within that node, between nodes, and with a User Interface Program (UIP). Interac-
tions with the UIP are for control and display purposes and are not directly related to the track-
ing function. The existing UIP was modified during this report period to make it compatible
with the new tracking software and display programs. Modifications consisted of decoupling the
test-bed control and data spooling components of the UIP from communications functions and
interfacing them with Ethernet and test-bed simulator software.

Each functional element illustrated in Figure II-I was implemented using two or more com-
municating processes. In each case, one of those processes serves as an "impedance matcher" for
communications with the UIP. The tracking software communicates internally via binary-encoded

Smessages, but the UIP communicates via ASCII-encoded messages. The impedance matcher per-
forms the necessary conversions.

'S

All of the elements in Figure II-1 are complete except for the tracking algorithm which is
not in a final state but can perform tracking functions. The following describes the tracking algo-
rithm and its status in more detail.

Figure 11-2 illustrates the components of the tracking algorithm. Two data bases are main-
tained in each node: one for acoustic azimuth tracks and one for target position tracks. Acoustic
azimuth tracks include estimates of azimuths and azimuth rates. They also include a covariance
estimate for both azimuth and azimuth rate. Acoustic azimuth tracks are formed by applying a
Kalman Filter to azimuth measurements. They are broadcast if they satisfy accuracy and elapsed-
time criteria since the last broadcast.

Local azimuth tracks are combined with azimuth tracks received from other nodes to initiate
position tracks. The position tracks estimate target positions and velocities, and also include co-
variances of those estimates. By applying an Extended Kalman Filter to azimuth measurements,

. R.R. Tenney and J.R. Delaney, "A Distributed Aeroacoustic Tracking Algorithm," Proceed-

ings of the 1984 American Control Conference, San Diego, California, 6-8 June 1984, Vol. 3,
pp. 1440-1450.
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position tracks are updated. They are also updated using position tracks received from other
nodes. Position tracks are broadcast if they satisfy accuracy, elapsed time since last broadcast,
and other criteria. These aspects of the new tracking algorithm were described in detail in a pre-
vious SATS.t

The tracking algorithm implementation is complete except for position track combining and
broadcast modules. These modules will be relatively small but will add significantly to the com-
plexity of system behavior. Therefore, the tracking algorithm has been carefully tested and stud-
ied without these components to minimize the difficulty of integrating them into the system. In
the course of that study, design and implementation changes were made which reduced the
number of false tracks and improved the quality of the true tracks. Implementation of the two
missing components began late in this reporting period.

B. TRACKING ALGORITHM PERFORMANCE

The tracking algorithm creates and maintains useful position tracks despite the absence of
- the position track combining and broadcasting modules. The exchange of azimuth tracks allows

position tracks to be initiated, and the acoustic position tracking algorithm updates those tracks
using local azimuth measurements. The resulting tracks are not as accurate as those which would
be obtained if position tracks were also exchanged. But they can be quite accurate, as Figure 11-3

*illustrates. The results are for a jet aircraft flying at Mach 0.6 at low altitude. They were
obtained using data collected by two acoustic arrays separated by about 4 km.

The asterisks in Figure 11-3 indicate the path actually flown by the aircraft. The first asterisk
indicates the position at the time the data acquisition system was turned on. Roughly 2 s of
travel separate each asterisk. The nodes are indicated by triangles, with a "+" symbol in the mid-
dle of the one from which the azimuth measurements are taken for acoustic position tracking.
Position estimates are indicated by small circles, each with a "tail" indicating estimated heading
and speed. A dotted ellipse surrounds each circle; it is the two-dimensional equivalent of one
standard deviation "error bar" about the estimated position. Again, roughly 2 s separate each esti-
mate. A dotted line used to connect estimates is often obscured by the tails.

Several measurements were required to establish azimuth tracks accurate enough to broad-
cast and to form the basis for an initial position estimate. This explains the delay in track initia-
tion, although the target was detected by both arrays from the moment the data acquisition sys-
tem was turned on. For these data the initial position errors of a few hundred meters are first
reduced, and then slowly grow as the target moves far beyond the nodes. The average error is
roughly 200 m, even when the aircraft's range is as much as 10 km.

The tracking software was also exercised on real and simulated azimuth measurement data
for lower velocity targets such as helicopters, including one case with two simulated targets. The

t" Semiannual Technical Summary, Distributed Sensor Networks Program, Lincoln Laborvtory,
M.I.T. (30 September 1983), DTIC AD-AI46209/2.
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track accuracy was generally worse than for the high-speed jet, the root-mean-square error being
typically 500 m. This result was expected for these relatively slow-moving targets without

'* exchanging position tracks. Theory predicts that, without position track combining, lower-velocity
targets are less observable than high-speed targets.

C. DISPLAY SOFTWARE

In addition to illustrating the tracking software performance as of 30 September, Figure 11-3
also illustrates the kind of displays generated by one of four new display programs that have
been implemented. The plot shown was generated in real-time sequence, with actual target posi-
tions (asterisks) and the estimates (circles, etc.) appearing alternatively in proper time order. The
quality of a track can be judged by the position of the asterisks inside (or outside) the ellipses.
Actual positions are plotted only when provided from an external source. For Figure 11-3, such
information was obtained from independent radar tracking. Information also is provided by data
simulation software when simulated data are used as input to the tracker.
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Three other kinds of plots are made by the display programs in the same real-time manner
(see Figures 11-4, 11-5, and II-6). They correspond to Figure 11-3 in that they plot results for the
same experiment and the same node.

Figure 11-4 plots the output of the'signal-processing algorithm. This is the data flowing
between the Sound Processing Subsystem (SPS) interface and the azimuth measurement algo-
rithm in Figure I-I. The vertical axis is the azimuth measured by the algorithm, and the horizon-

*" tal axis represents time. The asterisks indicate the measurement predictions based upon the actual
target track. The circles represent the detections made by the signal-processing algorithm.

As many as eight detections are produced every 2 s. At most, one detection is caused by the
target at each time; the others are noise. The time misalignment of the first asterisk and the first
circle is caused by propagation delay. The sound received at 72528 s was emitted by the aircraft
more than 10 s earlier. By the time the sound emitted by the target at that time reaches this
node, the target has moved some 2 km down its flight path. Detections cease at 72608 s because
only 80 s of data were processed.
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Figure 11-5 illustrates the data flowing from the azimuth measurement algorithm to the track-
ing algorithm. The data stream is a conditioned version of the raw measurement stream. The azi-
muth measurement algorithm discards raw measurements which seem unlikely to have been
caused by aircraft and associates a variance with each measured azimuth. The format of the plot
is similar to that in Figure 11-4, but it appears different because most of the false detections have
been discarded and because a vertical line segment has been added to each circle. These vertical
line segments represent one standard deviation error bars. Note that the azimuth measurement
algorithm is not perfect; several false azimuth measurements are passed to the tracking algorithm.

Figure 11-6 shows the azimuth tracks. Symbology has been added beyond that which appears
in Figure 11-5. Tails have been added to the data points. The slope of each tail indicates the azi-
muth rate. In addition, dotted lines connect sequences which form one track. Note that the false
azimuth measurements shown in Figure 11-5 lead to the two false azimuth tracks in this figure.
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D. TEST-BED SIMULATION

Figure 11-7 depicts the test-bed software configuration with an emphasis on tracking soft-
ware. Each node consists of a SPS that provides target detections and a Standard Nodal Com-
puter (SNC) that performs tracking. Within each SNC, the operating system provides a two-layer
interface to an Ethernet that links the nodes with each other and with the User Interface Com-
puter (UIC). One layer adds and removes communication headers from application-level messages
while the other transmits and receives the messages. The UIC runs the UIP, which controls the
tracking software and records its performance, and the display programs, which selectively show
tracking algorithm performance. The Ethernet interface in the VAX sends and receives messages.
Header addition and removal is done in the UIP.

The test-bed provides limited support for software debugging. This has prompted us to
develop a simulation of the test-bed having sufficient fidelity to allow most of the debugging of
the tracking software to be done on a general-purpose research computer. This simulation was
initially developed under Version 7 UNIX on a PDP- I 1/ 70 and is now being converted to run
under Berkeley 4.2 UNIX on a PDP-I 1/780. In addition to aiding in debugging, the simulation
provides an environment in which to exercise the tracking software in advance of the actual test-
bed's availability.

Figure 11-8 illustrates the test-bed simulation configuration. The most obvious component is
the Ethernet and communications interface simulation, indicated by the odd-shaped box in the
figure. This component mimics the test-bed Ethernet distribution of point-to-point and broadcast
messages, plus the addition and removal of communication headers by the Nodal Run-Time Sys-
tem (NRTS) in each nodal SNC.

Another important element of the simulation environment is the acoustic measurement inter-
face. This mimics the acoustic measurement process by routing preprocessed or simulated signal
processor output from a file into the appropriate port of the SPS interface.

In the simulation environment, NRTS operating system services are emulated by subroutines
with identical parameters to the NRTS calls and by following special conventions in writing the
tracking software. Differences between the simulation and test-bed node environment are isolated
in a small number of subroutines. Because of such residual differences, some debugging must be
done in the test-bed. But the tracking algorithm itself is being completely debugged in the simula-
tion environment.

I1
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II. SELF-LOCATION

The DSN self-location problem has been formulated as a distributed estimation problem.
Two algorithms based upon estimation theory have been implemented and are being tested. The
algorithms require initial nodal position estimates, and the network must have sufficient
connectivity.

The two algorithms correspond to two different ways of finding the distance between two
nodes, as shown in Figure III-1. The first uses the differences in x and y positions of two neigh-
boring nodes as the measurements. These measurements are a linear function of nodal positions.
The second uses the actual range measurements, which can be formed using time of-arrival data.
This makes the estimation problem nonlinear in the x and y positions. The algorithms solve the
two-dimensional distributed location problem. In both algorithms, it was assumed that all mea-
surements would have errors, and a zero-mean Gaussian error distribution was used.

NODE i
(x1,y1)

(a) Ay = Yi - Yj

NODE I
(x,yi) AX =X i - Xi

NODE k

(xk.yk)

dkt 0~k- ~) 2 + (k- -P

(b)

NODE t

Figure I1-1. Two types of Intemodal messurementa: Ia) linear; (b) nonlinear.
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TABLE 1l1-1

Algorithm performance for Network In Figure 111-2

Measurement Initial Position Standard Deviation
Standard
Deviation 5 m 50 m 500 m

1mn) _ _ _ _ _ _ _ _ _ _ _

160 301) 4.6 25.2
____________ 6.4(2) 57 300

15 4 17.6 37.2
6.8 35 48

1.5 11.4 29.2 43.8
_________ 3.5 1 5.3 1 4.4

Notes: (1) Average number of algorithm cycles per node.
U'(2) Final position error standard deviation (in meters).

* (2500, 2500)

(3000.,1500)

(-1500. -1500) (500. -1500)

X = REFERENCE NODE
0 = OTHER NODE

- = COMMUNICATIONS LINK

Flgw. 111-2. Spmey connecte network.
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The linear problem was treated first because it is simpler to solve, even though that kind of
measurement would not be available in a real network. Tests of this algorithm confirmed the
validity of our approach and allowed us to develop a test environment for distributed self-
location algorithms that use range measurements. The variables in the simulation were: the stan-
dard deviation of node initial position estimates, standard deviation of internodal measurements,
and a parameter controlling convergence of the algorithm at each node. Random 10-node net-
works were generated with I node considered as a "reference" node (with a smaller standard devi-
ation on its initial estimate than the other nodes) to prevent the network configuration from
"drifting" in absolute coordinates. Ten runs were made on each of ten networks for three differ-
ent values of both prior and measurement error standard deviations. All cases behaved much as
one would expect intuitively, taking more time to converge when connectivity was low or when
errors were large.

The more complex nonlinear algorithm that makes use of range measurements is based upon
the minimization of a fourth-order cost function of the node positions. The derivatives of this
function are set to zero to find the minimum. As a result, there are two simultaneous cubic equa-
tions to be solved at each node at every iteration. Three different solution methods were investi-
gated. The most successful was to solve for each position variable separately with the other held
constant at its last value, then iterate between the x and y unknowns. Newton's method was less
successful because of its tendency to find local instead of global extreme points. The third
method was to find a closed-form solution with the help of MACSYMA (a symbolic mathemat-
ics manipulation program), but this was unsuccessful due to the extreme complexity of the equa-
tions that were obtained.

Similar simulation testing was done for the nonlinear algorithm with the exception that three
reference nodes were needed to prevent rotation and translation of the solution. Again, the algo-
rithm performed as expected. Table III-I shows some of the performance measures found for the
network in Figure 111-2. Note that none of the nodes can hear all of the reference nodes, so no
node is performing triangulation from three known positions. The results shown required about
6 s of VAX-I 1/780 time per algorithm cycle per node.

15



IV. KNOWLEDGE-BASED DATA INTERPRETATION

During this report period, we have investigated the expectation-and-diagnosis approach to
knowledge-based data interpretation. In particular, we have completed experiments with rule-
based diagnosis and have formulated a detailed design for a diagnosis system that uses model-
based causal reasoning. We have also identified options for providing expectations that can be
used for diagnosis.

A. RULE-BASED DIAGNOSIS

Rule-based systems are the most developed off-the-shelf AI technology. During this period
we obtained YAPS, which is a general package suitable for implementing antecedent-driven rule
systems, and used it to build a DSN diagnosis system consisting of approximately 200 rules.
Standard knowledge engineering techniques were used to obtain the empirical rules-of-experience.
The diagnosis system was implemented on our Symbolics 3600 Lisp machine.

A DSN system involves many complex interacting phenomena. It is extremely difficult to
represent the knowledge needed to diagnose such a system in simple rules of the type allowed by
generic expert system tools such as YAPS. This became quite apparent as we developed the DSN
rule-based diagnosis system. One aspect of the problem is that empirical rules-of-experience may
no longer be valid for even small changes in the details of the system. This is because empirical
rules take a black-box view of the system and concentrate on input-output relationships. If the
internal design of the DSN system is changed, it is then not clear how to change these input-
output relationships. It is more preferable to have a diagnosis system which has model-based
knowledge of how the DSN functions.

B. DSN DIAGNOSIS WITH MODEL-BASED KNOWLEDGE

Each node of the DSN system contains complex parameterized algorithms for signal process-
ing and tracking. Whenever these parameter settings are not suited to the actual situation, errors
arise in the system outputs. In diagnosing such a system, one can often make use of theoretical
models underlying the algorithms. For example, underlying the signal processing is the theory of
spectral and wavenumber analysis and the DSN tracker makes use of Kalman filtering theory.
But note that whereas the underlying theories supply conceptual models, they do not spell out
how to use those models for diagnosis. We have addressed this issue and have designed a diag-
nosis system with knowledge structures that will allow us to use the conceptual models to accom-
plish DSN diagnosis.

A strategy known as causal backward tracing uses model-based knowledge and has pre-
viously been investigated for diagnosing complex systems. Lesser and Hudlickat used this strat-
egy with the assumption that all intermediate data states are always available. This is unrealistic

t E. Hudlicka and V. Lesser, "Meta-Level Control Through Fault Detection and Diagnosis," in
Proceedings of AAAI-84 (August 1984), pp. 153-161.
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for our DSN system because of the enormous amounts of data and, in the absence of the data,
causal backward tracing often cannot be accomplished. For our work we have limited the avail-
able data to consist of only the target position tracks generated by each DSN node.

For situations where intermediate data states are not available for inspection, Davis" (in the
context of digital hardware diagnosis) used a simulation strategy for generating the missing data
states. There are difficulties with this approach for our DSN diagnosis problem. First, it might
be necessary to simulate an enormous amount of data. Second, and more important, actual DSN
data often do not efficiently capture the causality of events as explained by the conceptual
models.

Our approach is based on conceptual simulation instead of the direct simulation approach of
Davis. The focus is upon data structures that are appropriate to the underlying conceptual mod-
els. We view the DSN as an operator that maps actual aircraft tracks into output tracks. Ideally,
it is an identity operator. Diagnosis consists of explaining why it is not. We represent the DSN
as a collection of conceptual processes and search for a subset that explains the input-output
discrepancies. This is done through a two-phase process. First, qualitative reasoning is used to
formulate a plan consisting of a minimal sequence of processes that might explain discrepancies.
The plan is then quantitatively executed (simulated). If the plan-execution fails to explain the dis-
crepancy, a process of replanning ensues. Once the processes responsible for a discrepancy have
been identified, the next step is to determine if those processes can be changed by parameter
adjustment to remove the discrepancy. For this we use models that capture the causality relation-
ships between the conceptual processes and actual system parameters.

C. EXPECTATION SOURCES

The diagnosis system design requires the availability of alternative sources of information
(Expectations) that can be compared with the tracking output to detect discrepancies.

In the system development context, DSN developers can supply a priori knowledge of air-
craft movements for controlled system tests. In this situation a diagnosis system could serve as an
automated assistant to system developers. Although this is a potentially important role for a diag-
nosis system, it is equally important to consider diagnosis of a fully automated and operational
DSN. This requires that discrepancy detection be fully automated. As described below, we have
identified four strategies for providing expectations in a fully automated system. In all cases it
should be noted that diagnosis includes the possibility of errors in expectations.

The most obvious strategy for discrepancy detection in the DSN context is to compare two
different nodal views of an area of coverage which is common to both nodes. In this case, we
consider one of the views to be the expectation and the other one as the candidate for diagnosis.

A second option is to provide tracking constraints by acoustic recognition processing of
microphone signals. The basic idea is that the microphone signals contain information that is not

t R. Davis, "Diagnosis via Causal Reasoning: Paths of Interaction and the Locality Principle," in
Proceedings of AAAI-83 (August 1983), pp. 88-94.
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utilized by the tracking system. Acoustic recognition processing can capture some of this informa-
tion. A simple example of acoustic recognition processing is the detection of power peaks in the
microphone signals at a node. A peak theoretically corresponds to an aircraft at its closest point
of approach (CPA) with respect to the node. The time and power of this CPA-associated peak
can be used to check the tracker output.

The third strategy is track extrapolation - predicting the evolution of currently measured
tracks. The prediction may be based on knowledge about typical flight characteristics for various
aircraft types and situations. The idea is to use the predictions for discrepancy detection in future
track outputs.

The fourth strategy is to use empirical knowledge to identify unlikely track patterns. For
example, tracks of short duration often do not correspond to actual targets. One might assume
that long tracks are correct and that short tracks are discrepancies that need to be diagnosed.

Current plans are to develop elements of an experimental diagnosis system in the DSN devel-
opment context, with expectations provided by knowledge of controlled test scenarios. We also
plan to perform acoustic recognition experiments to develop track constraining algorithms for
future use.

4
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V. VIDEO SENSOR SUBSYSTEM

We are developing a video subsystem to demonstrate acoustic cueing, to improve tracking
through the use of video-derived azimuth measurements, and to experiment with resource manage-
ment and cooperative use of multiple sensor types.

The hardware for the video sensor subsystem (TV node) is complete except for planned mod-
ifications of the AZ/EL mount position readout electronics. The system includes an environmen-
talized, silicon target TV camera with a 16/160-mm zoom fl.8 lens, mounted on a remotely con-
trolled AZ/EL mount, all mounted on a pedestal on the roof of a Lincoln Laboratory building.
From this location we have a clear view of Hanscom Field and the surrounding area and of
many targets of opportunity which can be used for system testing. All TV node electronics are
installed in a cabinet rack inside the Laboratory. The system includes a standard computer termi-
nal that is used for control.

Software has been written to test the basic functions of the TV system:

(a) Azimuth Positioning of Camera Mount (00 to 3600)

(b) Elevation Positioning of Mount (-200 to +30)

(c) Camera Focal Length Setting (Zoom lens 16 to 160 mm)

(d) Read Position (Azimuth, Elevation and Focal Length)

(e) Relative Azimuth Positioning (Left or Right)

(f) Relative Elevation Positioning (Up or Down)

(g) Frame Freeze (acquire single frame)

(h) Mask (protect a portion of a frame)

Additional diagnostic and support routines have been written including routines to dis-
play images and make hard-copy printout, reset and reconfigure I/O display look-up tables,
and print out frame buffer status.

Exploratory versions of image-processing routines have been implemented during the
past quarter. One such routine, a moving-target detector, performs sequential TV frame sub-
tractions and presents the results on the video monitor display. In tests with local aircraft,
automobile, and pedestrian traffic, the display clearly shows the outline of the moving

* objects. By line-scanning such frames, frozen in a buffer, it should be possible to detect and
determine the azimuth of a moving target. A second image-processing routine, an experimen-
tal 3 X 3 convolution program, demonst'ates the potential uses of image averaging and/or
smoothing as well as target edge detection techniques.
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VI. ACOUSTIC SUBSYSTEM

A. ARRAY PROCESSING ALGORITHM EVALUATION

In this reporting period, we continued to evaluate the test-bed signal-processing algorithm
* with real and synthetic data.

First, we examined the sensitivity of the algorithm to changes in its parameter values using
acoustic data from an F-Ill jet aircraft. We also had ground truth information in the form of an

* independent radar track. Parameter variations that were investigated included the number of ele-
vations sampled, averaging interval, and prefiltering frequency band. The algorithm was insensi-
tive to the number of sampled elevations (ranging from 8 to 60 samples). Its performance
improved with increasing averaging time interval, from 1 up to 10 s. This was expected since
increased time averaging improves signal-to-noise ratio. For long-range targets, performance
improved when prefiltering included the low-frequency bands.

F-I ll runs also were used to investigate azimuth measurement precision. For this purpose
power measurements were made every 0.250 in azimuth, and target azimuth was estimated as the
azimuth corresponding to the largest power. Measured standard deviations of azimuth estimates
ranged from about 0.60 for very close and high-power situations to about 40 at longer ranges
near the detection limits of the system. These measurements are for low-wind good propagation
conditions.

We plan to use 30 azimuth increments for our real-time implementation. This will be suffi-
-ient to get the best possible measurements for distant low signal-to-noise targets. Some accuracy
may be lost under very good propagation conditions and for nearby targets, but we believe that
this will not be a serious problem. The primary reasons for limiting the azimuth increment size
are to conserve processing time and memory. Figure VI-I shows the azimuth measurements
obtained from a typical F-I ll flyby using 30 increments. The plot shows azimuth corresponding
to the largest power peak for each measurement time. This explains the very large errors early
and late in the data. They correspond to times when the target is no longer the loudest noise
source. The solid line is the predicted ground truth acoustic azimuth that was derived from inde-
pendent radar tracks.

Existing 4-node UH-I helicopter data also were reprocessed with the new signal-processing
algorithm to provide target detections and azimuth measurements as test input for new tracking
algorithms.

The new tracking algorithm will require an estimated standard deviation along with each azi-
muth estimate. We have begun to investigate how to provide this estimate and to investigate the
performance differences between our present wideband signal-processing algorithm and the pre-
vious narrowband maximum likelihood method (MLM). Initial experiments are being performed
with simulated data consisting of band-limited random plane waves and additive random noise.
A signal band from 50 to 100 Hz was used. Wideband processing was performed using this entire
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Figure VI- I. Acoustic azimuth meeumennt for F-il flyby

band, and MLM processing was performed from 48 to 104 Hz in 8-Hz steps and with 8-Hz reso-
lution. The accuracy of the MLM depended upon the frequency of analysis. In general, the wide-
band method provided an accuracy corresponding to that for the MLM frequency with the best
accuracy.

B. REAL-TIME SIGNAL-PROCESSING IMPLEMENTATION

The design for a new Signal-Processing System has been completed. An initial test version
has been developed to run under the RSX I IM operating system to test out the basic design. The

* test software reads prerecorded acoustic peak measurements from tape and provides them to the
tracking system interface. The tracking system interface requires further refinement and we must

* also integrate existing array processor code into the system and develop an RSX1 I1 driver for the
A/ D system. We are also investigating how to implement the same capabilities in an RSX I IS
operating system environment. RSX I IS differs from RSX 11I M in that the former is a memory

* resident system and the latter requires a disk.
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C. MICROPHONE ARRAYS

A new nine-element DSN acoustic array has been deployed into a forested area near the
Laboratory. It is nearly equidistant from two other fixed arrays located on Laboratory building
rooftops. We have located all electronic equipment associated with this array in our main DSN
laboratory area, which is several hundred meters from the array. The new array will be used to
test changes to front-end hardware and provide answers to questions concerning ground deploy-
ment of arrays in wooded areas. Standard unshielded telephone lines are used to carry the array
signals. This required that we use differential amplifiers with high common-mode rejection at the
terminating end.

Phone-fine tests were conducted using Geosource Model MDS-10 preamplifier modules as
replacements for existing front-end modules. The new units offer several advantages. They have
selectable anti-alias filters with 750- and 375-Hz corner frequencies and their roll-offs are 117 dB/
octave compared with a single corner at 250 Hz and a 12-dB/octave roll-off for the existing fil-
ters. They provide selectable gains from 12 to 48 dB in 4-dB steps, whereas the existing system
provides only a single 37-dB gain setting. The newer amplifiers provide increased common mode
rejection and lower noise. They offer selectable 60-Hz notch filters and high-pass filters to
remove wind noise if necessary.

As a result of successful data-recording tests with the new array, using phone-line transmis-
sion and MDS-10 signal conditioning, 14 phone-line pairs have been allocated for use with the
new array. A new prototype DSN front-end chassis has been constructed which is designed to
accommodate MDS-10 modules and provide front panel switching of the various parameters for
each individual channel. The decision to build new front ends for the remaining nodes will be
made after we gain more experience with the new configuration.

4
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VII. TEST-BED FACILITY ENHANCEMENTS

A. LL-XN HOST COMPUTER

During this reporting period, the Group host computer (a DEC PDP-11/70) was replaced
by a DEC VAX-I1/780 CPU. One new disk drive was added to three existing 256-Mbyte
removable-media drives to provide a total formatted capacity of I Gbyte. The previously used
magnetic-tape drive, array processor, printer, and network interface equipment were integrated
into the upgraded environment. A newly purchased laser graphics printer was added to support
higher resolution graphics hard-copy output.

An enhanced version of AT&T's VAX UNIX from the University of California at Berkeley
(4.2BSD UNIX) was installed as the host operating system. An earlier version of the UNIX oper-
ating system, UNIX Version 7, was used on the previous Group host. The continued use of the
UNIX operating system allowed for upward compatibility of much of the installed hardware and
application software base, thus minimizing the effort necessary to accomplish a successful
upgrade.

Since system hardware and software integration was completed, the system has resumed full
user load and now functions as the primary host system for our research work. A significantly
greater reliability and system response time have been realized with this upgrade, resulting in
enhanced productivity on the part of system users.

I. NETWORKING

The installation of the VAX was done in parallel with the installation of an Ethernet to inter-
connect all Group computer resources, including DSN test-bed nodes.

The VAX system was easily integrated into the local network environment because of the
generic network software support available in the Berkeley 4.2BSD UNIX operating system. The
VAX and a separately procured Silicon Graphics were connected to our Ethernet and now com-
municate with each other. In addition, a SYMBOLICS 3600 Lisp Machine was connected, via
the same physical Ethernet connection, to the host VAX with the aid of a special Chaosnet soft-
ware module procured from SYMBOLICS for the VAX. An additional VAX-I 1/780 has also
been connected to the DSN Ethernet and communicates to the ARPANET with the LL-XN host
acting as an internet gateway processor.

To summarize, there are now two VAX-I I/780s, a Silicon Graphics Workstation, and a Sym-
bolics 3600 Lisp Machine connected to the network. In addition, a parallel effort (described
below) has been under way to provide Ethernet communications between SNCs of the actual
DSN test-bed. Presently, four of the test-bed nodes are attached to the DSN Ethernet.

The DSN Ethernet will provide improved throughput and experimental flexibility for experi-
ments involving multiple test-bed nodes. The Ethernet replaces a serial line-based communication
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emulation system. Internodal Ethernet communications software for the SNCs has been devel-
oped and installed. The software provides an internodal datagram service, with both broadcast
and point-to-point messages. To ease the transition from the old serial line-based system to the
new Ethernet system, the applications program interface to the communications software has
remained unchanged.

C. RADIO COMMUNICATION

Implementation of the radio broadcast protocol for the Communication Networks Technol-
ogy radios has proceeded along two lines. The lower layer of the protocol has been implemented
in an SNC processor connected with a radio unit interface board in a test configuration. Addi-
tionally, the higher layer of the protocol has been implemented in a UNIX simulation.

Several portions of the lower layer software have been finished. DMA software has been
completed for the Intel 8089 input/output processor which is a component of the Radio Unit
Interface (RUI) board. In addition, we have developed the low-level software interface between
the Digital Control Unit (DCU) and the RUI which enables programs in the DCU to control the
radio.

The higher layer of the protocol utilizes the functions provided by the software interface to
the RUI. The functions of the higher layer include scheduling of packets, rescheduling of aborted
transmissions, data transmission, packet reception, and delivery of received packets to user
processes.

We are now completing the lower layer of the protocol and integrating the higher layers into
the nodal run-time system. Development work for the radio protocol is being carried out in two
SNC chassis equipped with RUI boards. For testing purposes, the boards may be configured in
loopback or in a back-to-back connection.

D. NODE FLOATING POINT

Floating-point arithmetic hardware and software have now been added to the SNCs. SKY-FFP
floating-point processors have been installed and are operational on all standard nodal comput-
ers. Needed changes have been made to the C cross-compiler to support both double- and
singlie-precision floating-point arithmetic. Additional routines have been added to the nodal run-
time system to permit one FFP to be shared by all processors in the SNC.

A UNIX-compatible floating-point library was developed for use in the SNC. The library
includes a number of trigonometric and arithmetic functions for both single and double precision.

In addition, the UNIX math library was extended to provide single-precision arithmetic.
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GLOSSARY

CPA Closest Point of Approach

CPU Central Processing Unit

DCU Digital Control Unit

DEC Digital Equipment Corporation

DSN Distributed Sensor Networks

MACSYMA A symbolic mathematics manipulation program

MLM Maximum Likelihood Method

NRTS Nodal Run-Time System

RUI Radio Unit Interface

SATS Semiannual Technical Summary

SNC Standard Nodal Computer

SPS Sound Processing Subsystem

UIC User Interface Computer

UIP User Interface Program
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